I/ Introduction à l'embryologie

L'embryologie consiste à décrire le développement d'un individu du stade d'oeuf fécondé à celui de nouveau-né.

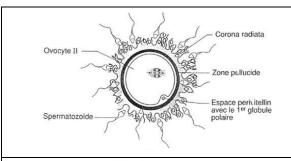
L'embryologie descriptive (ou formelle) <u>étudie la structuration de l'individu dans le temps et dans l'espace,</u> d'observer les étapes du développement des tissus et organes.

Elle ne permet pas de comprendre les facteurs qui contrôlent le développement des tissus et organes.

La triangulation consiste à répertorier plusieurs caractéristiques simultanées de l'embryon au moment d'un stade. Elle permet de déterminer des stades précis.

C'est la classification de Carnégie (23 stades de Carnégie) faisant le lien entre :

- l'âge présumé de l'embryon, compté à partir de la fécondation
- la taille
- les caractères morphologiques


Les stades de Carnégie ne sont pas basés sur les jours mais sur le <u>niveau de maturation de chaque tissu</u>.

La période embryonnaire couvre les 8 premières semaines de développement embryonnaire. Elle est segmentée selon les 23 stades de Carnégie.

La période fœtale couvre à partir du 3e mois le développement embryonnaire. Les repères sont la croissance en taille et la maturation des organes du fœtus.

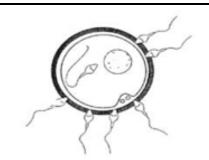
Période embryonnaire	Embryogénèse	Période de la fécondation à la fin de la gastrulation	- Formation de l'embryon - Migration et différenciation cellulaire - Formation du DET
	Organogénèse I	Formation des ébauches des organes et des appareils	
	Morphogénèse I	Délimitation de l'embryon	
	Organogénèse II	Formation des organes et des appareils par remodelage et maturation des ébauches	
Période fœtale	Morphogénèse II	Acquisition de la morphologie humaine	
	Croissance		

II/ La première semaine de développement embryonnaire

Expulsion de l'ovocyte au niveau de la jonction ovaire/pavillon

L'ovocyte est entouré par la <u>zone pellucide</u> et la <u>corona radiata</u>. L'ovocyte est incapable de se mouvoir. Permettent sa progression :

- Contraction des cellules musculeuses lisses de la musculeuse tubaire
- Sécrétion des cellules de la muqueuse tubaire
- Mouvement des cils des cellules de la muqueuse tubaire

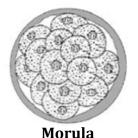


Arrivée des spermatozoïdes au niveau de la trompe.

Sélection des spermatozoïdes:

- pH acide du canal vaginal
- Mucus du canal cervical
- Ionction utéro-tubaire

Migration <u>active</u> dans le vagin et la trompe et <u>passive</u> dans l'utérus.

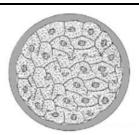


Rencontre de l'ovocyte et d'un spermatozoïde.

La <u>réaction acrosomique</u> du spermatozoïde permet de libérer des enzymes qui digèrent la zone pellucide.

Reconnaissance, fixation et pénétration du spermatozoïde dans l'ovule. Restructuration de <u>la zone pellucide qui devient infranchissable</u> par les spz.

Formation d'une cellule-œuf diploïde (ou zygote).

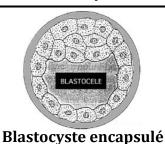


Les premières mitoses permettent la formation des blastomères.

<u>La zone pellucide limite la taille</u> : les cellules résultantes d'un grand nombre de mitoses sont plus petites.

Cette masse cellulaire est appelée blastula et est composée de jusqu'à 16 <u>blastomères (cellules de l'œuf) totipotents</u> (voir histologie).

La masse cellulaire de 16 à 30 blastomères est appelée morula.

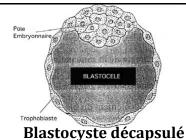


Clivage (ou segmentation) du zygote.

La morula subit le clivage: compaction, division, polarisation.

Le blastocyste formé est constitué de deux parties :

- Trophoblaste en périphérie
- Bouton embryonnaire (embryoblaste) au centre (cellules pluripotentes)



Blastocyste

Apparition du blastocèle.

Une cavité liquidienne appelée blastocèle se forme.

Le bouton embryonnaire, repoussé vers un pôle, devient le pôle embryonnaire.

Eclosion (ou hatching) du blastocyste.

La zone pellucide est lysée par une enzyme, la <u>strypsine</u> ou <u>trypsine like</u>.

Sans la zone pellucide, <u>l'embryon peut s'implanter sur l'endomètre</u>. Il y a donc un risque de grossesse extra-utérine si l'éclosion se fait trop tôt.

Apposition du blastocyste sur l'endomètre.

L'implantation se fait vers le fond de la cavité utérine par le pôle embryonnaire du blastocyste.

- Fenêtre d'implantation : J20/J22 du cycle menstruel
- Zone d'implantation : partie postéro-supérieure de l'utérus

Une coordination est nécessaire entre l'endomètre et le blastocyste :

- Etat de réceptivité de l'endomètre = tolérance immunitaire
- <u>Etat d'activation du blastocyste</u> = faible antigénéicité, forte synthèse, molécules d'adhérence, facteurs de croissance

III/ Pathologies de la première semaine de développement embryonnaire

Altérations génétiques

Au total seront éliminés 50% des œufs, dont une majorité durant la première semaine de développement.

<u>Jumeaux</u>

- <u>Vrais jumeaux</u> : monozygotes, obtenus par division de l'œuf <u>Faux jumeaux</u> : dizygotes, obtenus par fécondation de deux ovocytes