Introduction à la biologie cellulaire

La cellule est l'unité structurale et fonctionelle de l'être vivant:

- 10¹⁴ cellules
- 10¹⁵ bactéries essentielles à la vie (ex: flore intestinale)

I. Organisation, évolution et programmation d'une ç eucaryote

A. Organisation

Composition d'une cellule:

- ∘70% = eau
- ∘30% = macromolécules + ions, petites molécules
- Les macromolécules sont très sélectives et ne contiennent que certains éléments: carbone, hydrogène, oxygène, azote. On peut retrouver également d'autres éléments en moins grande quantité comme le Fe (transport de l'oxygène)

Cellules procaryotes	Cellules eucaryotes
- pas de noyau	- Noyau délimité par une enveloppe (double membrane) discontinue.
- pas d'organites	
- ADN libre, non compartimenté, chromosome unique.	- Présence d'organites baignant dans le cytosol
- cellules de petites tailles	- Cellules de grandes tailles
Traduction et transcription ont lieu en même temps ds le même compartiment (cytoplasme) = traduction co-transcriptionelle	Découplage entre transcription et traduction à cause de l'enveloppe nucléaire = traduction post-transcriptionelle

Les Organites:

Compartiments intracellulaires délimités en deux types de réseau

✓ Le système endomembranaire:

- Enveloppe nucléaire: partie externe de la double membrane nucléaire
- Réticulum endoplasmique (RE): synthèse et maturation des prot (REG) synthèse lipides. (REL)
- = point de départ du flux sécrétoire
- Appareil de Golgi: Glycosylsation de lipides et protéines.
 Un seul par cellules, composé de plusieurs dictysomes
- Lysosome: dégradat° des molécules, fournit à la ç de petites molécules permettant la synthèse de plus grosse.
- Endosome: capte les gros matériaux à l'extérieur et les fait pénétrer dans la ç.

√ Mitochondries et péroxysomes

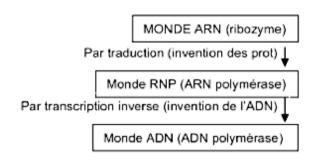
- Mitochondrie: principal centre oxydatif de la cellule: produit de l'<u>ATP</u> pr la ç. elle possède: - de l'ADN mitochondrial.
 - une double membrane
- Peroxysome: détoxyfication de la cellule mais ne produit pas d'ATP

Le cytosquelette:

Armature intracellulaire conférant les propriétés mécaniques de la ç.

Pr. Gilson

Cours 1


B. Evolution cellulaire

Les organismes peuvent être classés en 3 groupes ayant tous un ancêtre hypothétique commun appélé LUCA (Last universal Common Ancestor):

- Les bactéries/ eubactéries (procaryotes)
- Les archaes (procaryotes): vivent dans des conditions extrêmes - se rapprochent le plus des eucaryotes
- Les eucaryotes:

Il existe différentes hypothèses sur l'origine des cellules:

Théorie du monde ARN:

- 1. Apparition du premier ARN: monde ARN
 - = Réplication grâce à des ribozymes (ARNs catalyseurs)
- 2. Monde Ribonucléoprotéique RNP
 - = Réplication grâce à ARN polymérase
- 3. Monde ADN
 - = Réplication grâce à ADN polymérase

Théorie endosymbiotique:

- Endocytose de l'eubactérie par l'archae = endosymbiote.
 - la bactérie endocyté garde sa membrane = origine possible des mitochondries?
- L'ADN de l'eubactérie envahie le génôme de l'archae.
- Apparition de la membrane nucléaire
- Séparation transcription et traduction

C. Le cycle cellulaire

La division cellulaire permet aux cellules de proliférer ou de se renouveler, on peut ainsi observer 2 phases :

▶ Interphase :

- Phase G1: sensible aux facteurs de croissance et de différenciation. C'est la phase la plus variable.
- □ Phase S : réplication de l'ADN.
- Phase G2 : prépare la mitose, contrôle la bonne duplication des K (chromosomes).

G2 G1

Mitose ou phase M

Phase la plus courte du cycle.

La cellule se divise grâce à 2 phénomènes:

Caryocinèse: division du noyau (prophase, métaphase, anaphase, télophase)

Cytocinèse: division du cytoplasme

← La transcription et traduction se font pendant l'interphase

D. La programmation cellulaire:

La programmation cellulaire est déterminée par une combinaison de signaux exogènes et endogènes.

A l'inverse des ç animales, les bactéries n'ont pas besoin de signaux pour se diviser

La cellule a plusieurs possibilitées:

- Motilité
- Différenciation: processus de spécialisation
- Division
- Quiescence: la cellule se met en pause et pourra reprendre le cycle si elle a les facteurs de croissance nécessaire
- Sénescence: la cellule ne se divisera plus, cela peut-être physiologique ou pathologique.

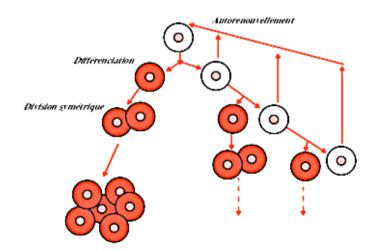
La sénescence ne veut surtout pas dire mort cellulaire, la cellule reste métaboliquement active et répond aux signaux.

Mort cellulaire: Apoptose = suicide cellulaire programmé
 Nécrose = mort accidentelle

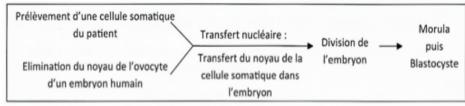
Cours 1

Pr. Gilson

II. Notions de cellules souches et d'homéostasie


A. Caractéristiques d'une cellule souche

- Non différencié
- Se divise de façon asymétrique
- Se différencie à la demande

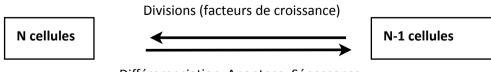

Rmg: la phase G1 est très courte chez les cellules souches

On distingue 4 catégories de CS:

- **Totipotente :** capable d'engendrer un organisme en entier.
- **Pluripotente**: peut donner tous les types cellulaires sauf les annexes.
- **Multipotente :** capable de se différencier en un large spectre de cellule.
- **Unipotente**: ne peut donner qu'un seul type cellulaire.

a. Les cellules souches embryonnaires (CSE)

Avantages	Inconvénients
- spécifique au patient. Les ç possèdent le même patrimoine génétique.	- création d'un embryon + origine des ovules = problème éthique majeur
- pas de rejet.	- Problèmes d'homogénéité/stabilité des processus de différenciation (cancer)


b. Les iPs: CS pluripotentes induites.

- Solution alternative évitant les problèmes éthiques.
- Reprogrammation de ç adultes en ç qui ont des propriétés de CS (pas d'embryon créé)
- Malheuresement la ç reprogrammée n'est pas tout à fait normal et peut induire la formation de cancers.

B. L'homéostasie

L'homéostasie est la capacité d'un organisme à restaurer son état originel suite à une perturbation ou un stress.

Un dérèglement de ce système peut donner un nombre anormal de cellules.

Différerenciation, Apoptose, Sénescence