Stéréochimie, interactions; substitution et élimination

- I Stéréochimie
- _ Notion d'isomérie
- _ Stéréo-isomérie
- _ Configuration absolue d'un carbone asymétrique
- _ Isoméries géométriques et configurations relatives

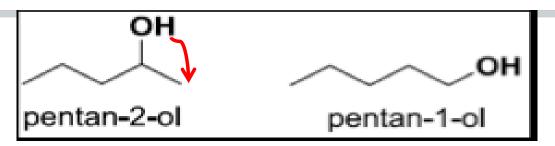
- II Interactions
- _ électrostatiques
- _ hydrogènes
- _ van der Waals

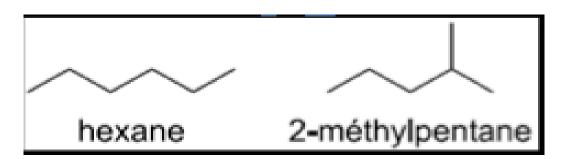
- III Substitution nucléophile
- _ Définitions
- _SN1 et SN2

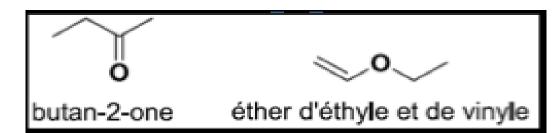
• IV Eliminations E1 et E2

Isomérie de constitution

• De position

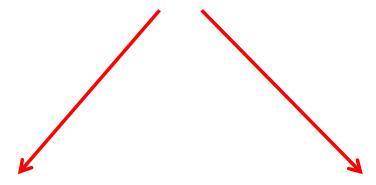

$$ex = C_2H_{12}0$$


• De chaine


$$Ex = C_6H_{14}$$

• De fonction

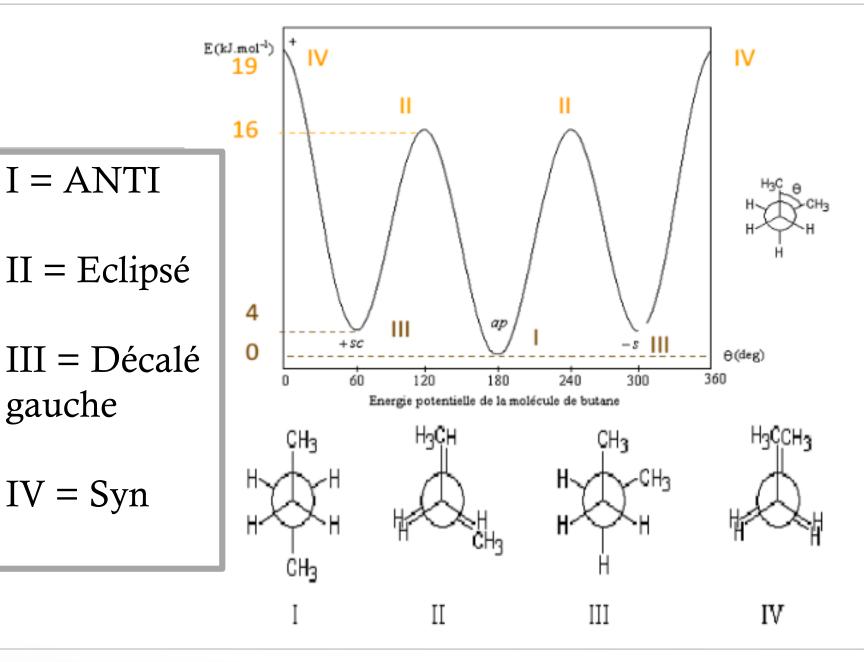
$$Ex = C_4H_8O$$



Stéréo-isomérie

- Même formule développée
- Position dans l'espace différente

Conformation


= **rotation** autour d'une liaison simple

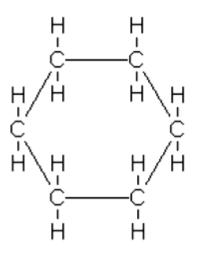
Configuration

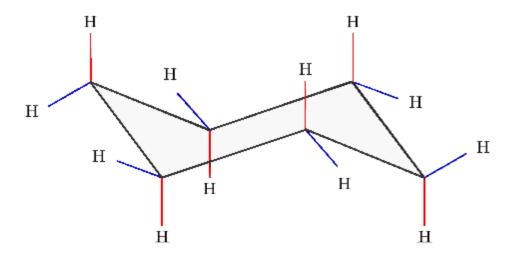
= rupture de liaison obligatoire

De conformation

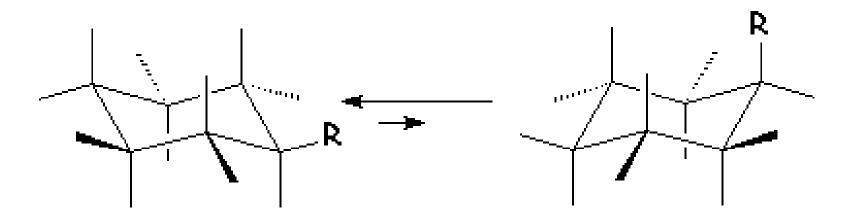
• Conformère **stable** = conformère de **basse** énergie = le plus **représenté**

I = ANTI


II = Eclipsé


gauche

IV = Syn


Cas du cyclohexane

• Configuration chaise

Cyclohexane substitué

Equatoriale

= dans le plan moyen

<u>Axiale</u>

= perpendiculaire au plan moyen

Configuration

• <u>Chiralité</u> = molécule non-superposable à son image dans un miroir

= pas de centre / axe de symétrie

• <u>Enantiomère</u> = 2 molécules images l'une de l'autre

• <u>Diastéréoisomère</u> = le reste

• <u>Mélange racémique</u> = mélange de 2 énantiomères en proportion égale

<u>Carbone asymétrique C*</u> = carbone sp3 avec
 4 substituants différents

→ Une molécule avec un C* sera TOUJOURS chirale

- <u>Une molécule avec plusieurs C* peut être achirale</u>
- $Ex = \underline{composé \ méso}$
 - = composé avec plusieurs C* et un centre
 - / axe de symétrie

Plan du cours

- I Stéréochimie
- _ Notion d'isomérie
- _ Stéréo-isomérie
- _ Configuration absolue d'un carbone asymétrique
- _ Isoméries géométriques et configurations relatives

Configuration absolue?

• Règle CIP = classement des substituant selon leur n° atomique \underline{Z}

• **R** (= sens horaire) ou **S** (= sans anti-horaire)

Méthode

- 1) Observation du 1^{er} rang : numérotation des substituants de 1 (= Z le plus grand) à 4 (= Z le plus faible)
- 2) Si 2 substituants ont le même Z → observation du 2ème rang pour ces deux subsistant seulement
- 3) Une liaison multiple est décomposée en liaison simple
- 4) Si au rang suivant on a plusieurs « chemins »: priorité au substituant le plus lourd

Exemples

1) Le 4 est en arrière: normal

2) Le 4 est en avant : on inverse

3) Le 4 est dans le plan : tourner le 4 dans en arrière

Plan du cours

- I Stéréochimie
- _ Notion d'isomérie
- _ Stéréo-isomérie
- _ Configuration absolue d'un carbone asymétrique
- _ Isoméries géométriques et configurations relatives

Isomérie géométrique

• Z (= zusammen = ensemble)

• E (= entgegen = opposé)

Utilise la règle CIP

Configuration relative

• Cis

Trans

Compare deux substituants d'une double liaisons (H non-compris)

II Interactions non-covalentes

• électrostatique

hydrogène

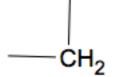
• van der Waals

- III Substitution nucléophile
- _ Définitions
- _SN1 et SN2

• IV Eliminations E1 et E2

Définitions

• <u>Régiosélectif</u> = isomère de **position** dans des proportions différentes


• <u>Stéréosélectif</u> = **stéréo-isomère** dans des proportions différentes

• <u>Chimiosélectif</u>= transformation d'une **fonction** précise de la molécule

Classe du carbone

• Primaire

• Secondaire

• Tertiaire

Nucléofugacité

BAS et à DROITE du tableau

• qualifie un groupe partant

• « Fuit le + »

Nucléofugacité

Bon nucléofuges

I-, Br-, H_20^+ , bases faibles, ATP

· Mauvais nucléofuges : alcool (doivent être traités)

amine (doivent être traités)

bases forte

Nucléophilie

• Bon nucléophiles

I-, CN-, SH-, Br-

• Mauvais nucléophiles

NO3-, CH₃COO-

Solvants

= donneurs et accepteurs de liaisons hydrogènes Aprotique

= accepteurs de liaisons hydrogènes Apolaire

Protique

 H_2O ,

CH₃OH,

CH₃CH₂OH,

CH₃CO₂H

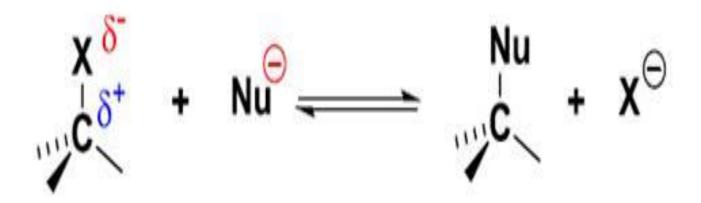
Aprotique polaire

Aprotiques apolaires

Tétrachlorure de carbone Hexane

Cyclohexane

Benzène



Toluène

- III Substitution nucléophile
- _ Définitions
- _ SN1 et SN2

• IV Eliminations E1 et E2

Substitution nucléophile: mécanisme général

SN1

- 2 étapes
- 1) Formation du carbocation par départ du nucléofuge = étape cinétiquement déterminante

2) Attaque du nucléophile

• Mélange racémique (à cause du C+)

Méthode

- Mésomérie
- RX3 (et RX2)
- Bon nucléofuge
- Mauvais nucléophile
- Solvant protique

SN₂

- 1 étape (pas de carbocation)
- Attaque en ANTI
- Inversion de Walden
- Stéréospécifique

ATTENTION: on a pas toujours inversion de la configuration absolue du C* (car on utilise la règle CIP)

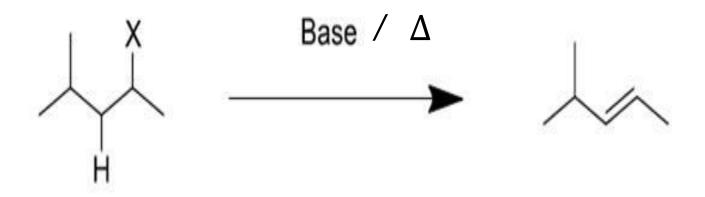
Méthode

- Pas de mésomérie
- RX0, RX1 (et RX2)
- Mauvais nucléofuge
- Bon nucléophile
- Solvant aprotique

<u>Piège</u>

• Alcool et amine = <u>TRÈS MAUVAIS</u> groupe partant

• **Traitement OBLIGATOIRE** avec:


Acides (H+, H2SO4)

réactif halogénant (SO2Cl)

Acide de Lewis

Exemples

Elimination: mécanisme général

- Une <u>élimination</u> sera toujours prioritaire sur une <u>substitution</u>.
- Une <u>E2</u> sera toujours prioritaire sur une <u>E1</u>

Règle de Saytsev

- Lors d'une élimination, on formera toujours l'alcène le plus <u>stable</u>
- → Plus l'alcène est substitué plus il sera stable

E1

- 2 étapes (comme la SN1)
- **Chauffage** (Δ) seulement

 Formation du carbocation en α par départ du nucléofuge

2) Elimination du H+ en β = formation de la double liaison

E1

- Formation de l'alcène le plus stable = E majoritaire (car plus stable)
- → Stéréo-sélective

E2

- 1 étape
- Base forte obligatoire
- Elimination du H en β en <u>anti-coplanaire</u>
- Stéréospécifique

5 N 1	E 1	5 N 2	E 2
2 étapes		1 seule étape	
1ère étape commune : formation du carbocation Etape cinétiquement déterminante v = k [RX] : réaction d'ordre 1		v = k [RX]. [Nu] pour substitution ou v = k [RX]. [B] pour élimination réaction d'ordre 2	
NON STEREOSPECIFIQUE		STEREOSPECIFIQUE	
car attaque du nucléophile de part et d'autre du plan du carbocation	car libre rotation autour de la liaison $-\frac{1}{c} - \frac{1}{c} \oplus$	car attaque du nucléophile à 180° du groupe partant Inversion de WALDEN	car groupements à éliminer <u>obligatoirement</u> en position ANTICOPLANAIRES
Si parti d'un énantiomère pur : obtention d'un mélange racémique	Obtention des <u>DEUX</u> alcènes Z <u>et</u> E	Si parti d'un énantiomère pur : obtention d'un énantiomère pur	Obtention d' <u>UN SEUL</u> des 2 alcènes possibles
Perte de l'activité optique si elle existait initialement	•	Conservation de l'activité optique si elle existait initialement	-