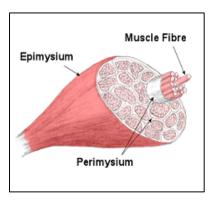
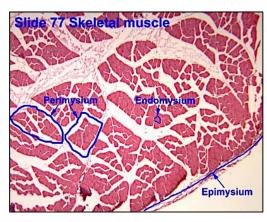

TISSUS MUSCULAIRES STRIÉS SQUELETTIQUES

I. Caractéristiques générales

Les muscles striés squelettiques sont rattachés aux pièces squelettiques osseuses, et sont responsables des mouvements osseux et de certains organes. Ils sont constitués de cellules musculaires (rhabdomyocytes = fibres musculaires striées), de forme cylindrique, multinuclées, présentant une striation transversale caractéristique (dû à l'agencement spécifique des myofilaments formant les myofibrilles).

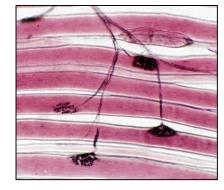

A gauche **coupe transversale** => petits traits blancs qui constituent les limites des


cellules. 2 coupes
longitudinales =>
on retrouve de
manière
transversale
(perpendiculaire
à l'axe de la
cellule ++) des
striations avec
alternance de
bandes
claires/sombres.
On retrouve les

noyaux refoulés à la périphérie des cellules

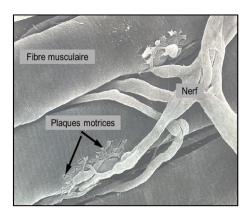
Les composants matriciels de ces tissus conjonctifs permettent le <u>rattachement des muscles aux structures osseuses</u>. Les fibres de collagène constitutives des tendons, s'insèrent directement aux **extrémités des fibres musculaires**.

- ⇒ Les rhabdomyocytes = fibres musculaires striées sont entourés chacun par un tissu conjonctif fin (endomysium)


La contraction des muscles striés se fait sous le contrôle de nerfs moteurs : fibres nerveuses ramifiées innervant des groupes de rhabdomyocytes.

<u>Unité motrice</u> = motoneurone alpha + différents myocytes qu'il innerve par ses ramifications axonales.

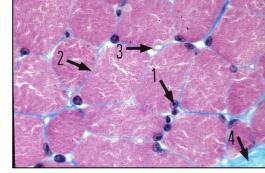
Les rhabdomyocytes sont subdivisés en **3 catégories** en fonction de certaines caractéristiques => fibres **rouges**, **blanches** ou **intermédiaires**.

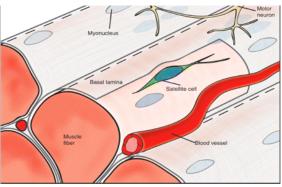

Chaque muscle a une **composition fixe** (mélange des différents types de rhabdomyocytes) **et des propriétés spécifiques** en termes de contractilité et de résistance à la fatigue.

<u>Photo en MO</u>: ramifications du motoneurone alpha, qui vont chacune rentrer en contact avec un rhabdomyocyte (formation d'une unité motrice).

<u>Photo en ME</u>: idem pour les ramifications (fibres musculaires en gris foncé, on voit bien les striations perpendiculaires au grand axe des cellules).

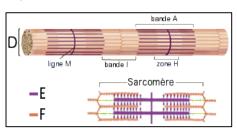
II. Caractéristiques microscopiques




- ✓ Diamètre varie de 50 à 100 microns.
- ✓ Longueur varie de **1 à 5 cm**.
- Multi-nucléés => environ une centaine de noyaux résultant de la fusion entre cellules myoblastiques.
- ✓ Noyaux (1) à la périphérie de la cellule, ovoïdes, dans le sens de la longueur de la fibre. ++

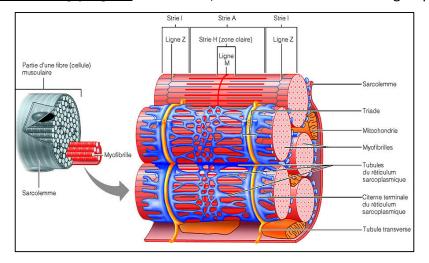
Chaque cellule est entourée :

- d'une **lame basale** accolée au sarcolemme
- d'une fine couche conjonctive,
 riche en réticuline =
 ENDOMYSIUM (2) plus
 périphérique.


Il existe des cellules satellites (myogéniques) avec un cytoplasme réduit, localisées tout le long de la fibre musculaire entre le sarcolemme et la lame basale. ++

Sarcoplasme des rhabdomyocytes

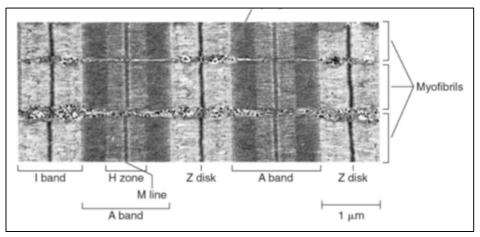
- ✓ <u>Les myofibrilles</u> présentent des <u>bandes transversales</u>, à l'origine de l'aspect strié de la cellule (en MO <u>et</u> ME).
 - Bandes claires (bandes I : isotropes) ++
 - Bandes sombres (bandes A : anisotropes) ++


Dr. Ambrosetti

Chaque **bande claire (I)** présente une strie transversale en son **milieu** => <u>strie</u>

ou disque Z. ++

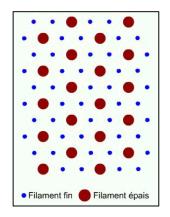
Portion myofibrillaire : entre 2 stries Z successives => une demi bande I, une bande A, une demi bande I = SARCOMÈRE (Unité contractile du muscle)


- Mitochondries allongées et abondantes => énergie nécessaire à la contraction, localisées entre les myofibrilles.
- <u>Réticulum sarcoplasmique lisse</u>: réseau de tubules enserrant les myofibrilles.
- ✓ Système T : invaginations tubulaires, issues du sarcolemme.
- ✓ Grains de glycogène : nombreux, constitue une réserve énergétique.

III. Structure et composition moléculaire des myofibrilles

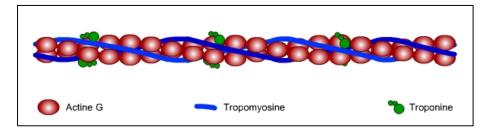
Observation ME/échelle ultrastructurale

- Au milieu de chaque **bande A**, on retrouve une **zone plus claire (bande H).**
- Au centre de la bande H, on retrouve une ligne plus sombre (ligne M).



Deux types de myofilaments constituent les myofibrilles :

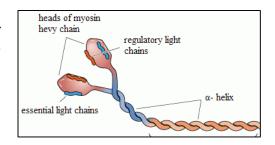
- ✓ Myofilaments fins (actine)
- ✓ Myofilaments épais (myosine)


1. Myofilaments fins

- ✓ Constituants majoritaires de la bande I.
- ✓ Disposition hexagonale.
- ✓ Se trouvent entre les travées formées par les myofilaments épais.
- ✓ Présents dans une partie de la bande A en fonction du degré de contraction de la cellule.

Les myofilaments fins (constituants majoritaires des bandes I claires) vont s'intriquer avec des myofilaments épais.

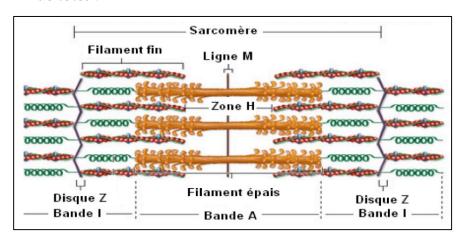
- Les myofilaments fins sont constitués de <u>2 molécules d'actine F</u> (ellesmêmes constituées de monomères globulaires d'actine G). Les monomères globulaires vont se polymériser et s'agencer en hélice dont les <u>extrémités</u> (+) vont se lier au niveau des disques Z, grâce à l'alpha-actinine.
- Les molécules de <u>tropomyosine</u> sont mises **bout à bout** et localisées dans le <u>sillon hélicoïdal d'actine</u>.

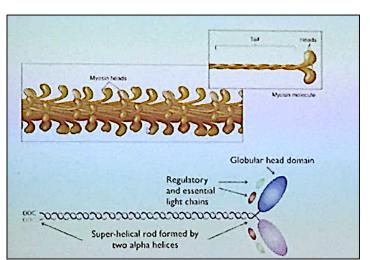


- Complexe moléculaire de troponine (3 sous-unités) ++, associée à chaque molécule de tropomyosine.
 - o Troponine T (Tn-T): liaison à la tropomyosine
 - o <u>Troponine C (Tn-C)</u>: fixation du <u>calcium</u> (entraîne la contraction)
 - o <u>Troponine I (Tn-I)</u>: <u>i</u>nhibe la liaison entre actine et myosine (relâchement et **mise au repos du muscle**).

2. Myofilaments épais

Association de <u>myosine de type II</u> => 2 chaînes lourdes (MCH) + 4 chaînes légères (L).

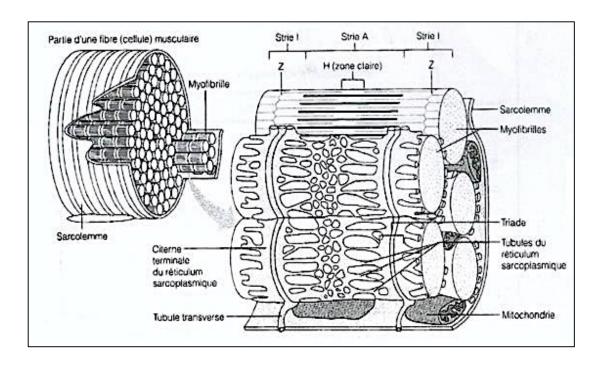

Les chaînes légères se trouvent à la base des têtes des chaînes lourdes.



<u>Par tête (chaîne lourde MCH)</u>, il y a une <u>chaîne régulatrice</u> (LC-R) et une <u>chaîne essentielle</u> (LC-S). Ces têtes sont donc associées à des <u>territoires</u> <u>régulateurs</u>.

Présence de renflements (têtes des myosines) localisés à la partie externe des bandes A.

- ❖ Têtes de myosine : domaine moteur de la molécule (site de fixation des molécules d'ATP + site d'interaction avec l'actine). ++
- Queues des myosines : permettent aux molécules de myosine de se disposer tête-bêche et de se structurer en un filament épais. La région centrale de la bande A et du sarcomère est ainsi dépourvue de têtes!

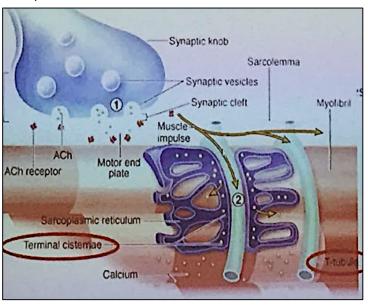


Ressort vert = Titine

IV. Réticulum sarcoplasmique et système T

1. Réticulum sarcoplasmique

- ✓ Réticulum endoplasmique <u>lisse</u> ++ qui va former un réseau tubulaire, qui se dispose de manière parallèle aux myofibrilles et qui enveloppe ces myofibrilles.
- ✓ <u>Fusion latérale des tubes</u> au niveau de la <u>jonction entre bande A et bande I => formation de culs-de-sac dilatés => citernes terminales.</u>
- ✓ <u>Site de stockage du calcium.</u> Libération dans le sarcoplasme, à l'origine de la contraction musculaire.

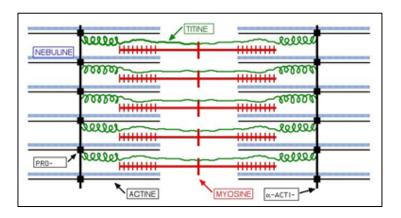

2. Système T

Composé de tubules T (transverses) creux => <u>invagination du sarcolemme</u>, au niveau de la JONCTION bande A/ bande I, en regard des citernes terminales.

Ces tubules T sont insérés entre les citernes de 2 sarcomères successifs => TRIADE (= tubule T + 2 citernes)

Chaque **tubule T** se ramifie, en contact avec de **multiples sarcomères** (portés par des myofibrilles différentes) => constitution d'un système tubulaire transversale = système T

- ➤ Le système T est en continuité avec le sarcolemme, permet la transmission de l'influx nerveux aux sarcomères des myofibrilles les plus centraux de la cellule => permet une contraction synchronisée des sarcomères des myofibrilles centrales et périphériques de la cellule. +++
- ➤ Le système T permet la communication avec le liquide interstitiel de l'espace intercellulaire => apport de nutriments (glucose) + O2 en profondeur de la cellule !



Tubes violets =
RS avec citernes
terminales à
l'extrémité du
sarcomère
(jonction A/I).

Tubes bleu clair = tubules T (en continuité avec le sarcolemme, qui s'enfonce dans la cellule)

V. Particularités moléculaires des rhabdomyocytes

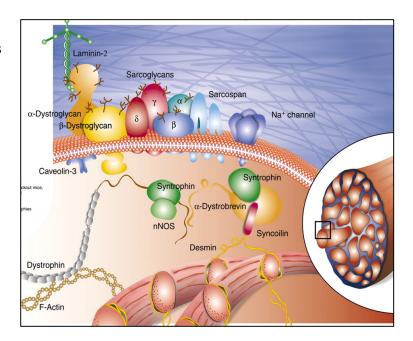
Il existe des molécules autres que celles du système contractile (actine/myosine) qui participent à l'architecture cytosquelettique des rhabdomyocytes.

1. Molécules myofibrillaires

L'architecture myofibrillaire est dépendante de nombreuses molécules qui permettent l'agencement et le <u>maintien</u> de manière à assurer la <u>fonctionnalité des éléments contractiles</u> ++

- ★ <u>Titine</u>: molécule géante élastique, étendue sur la longueur d'un demi sarcomère. Attache indirectement les filaments épais (myosine) au disque Z, maintien leur alignement.
- Nébuline : Ancrée sur la strie Z, associé aux filaments fins => contrôle leur longueur (par régulation de la polymérisation de l'actine).
- Desmine : Filament intermédiaire, forme la charpente cytosquelettique du disque Z.
- Alpha-actinine: Au niveau des stries Z. Assure l'arrimage des myofilaments d'actine de 2 sarcomères successifs.
- Myomésine: Au niveau de la ligne M (centre), lié à la titine et à la partie centrale des filaments épais.

2. Molécules et complexes moléculaires de liaison


a. Complexes moléculaires de liaison

Molécules membranaires permettant des liaisons indirectes entre les constituants matriciels et les molécules de l'espace sous-sarcolemmique associé à des élements sarcomériques.

Costamères

- Epaississements régulièrement espacés sous le sarcolemme, en regard des stries Z.
- Lien physique entre sarcomère et sarcolemme. ++
- Analogues des contacts focaux :
 - par les molécules impliquées,
 - par leurs rôles: établissement de liens indirects entre cytosquelette microfilamentaire sarcoplasmique et constituants matriciels de la lame basale.

Deux types d'associations moléculaires distinctes regroupés au niveau des costamères :

Complexe DAPC (dystrophin associated protein complex)

- Ensemble de protéines
 - o **Transmembranaires** (dystroglycanes et sarcoglycanes);
 - Périphériques (dystrophine : protéine sarcoplasmique liant l'actine ++)
- Assure un lien mécanique entre les éléments matriciels de la lame basale (collagène IV et laminine 2) et le réseau d'actine cortical intracellulaire. (cortical = périphérique)
- Dystrophine: protéine volumineuse, retrouvée dans le sarcoplasme cortical de toutes les cellules musculaires, concentrée au niveau des costamères (rhabdomyocytes et cardiomyocytes). La dystrophine se lie à l'actine (N-term) et au béta-dystroglycane (C-term).
- ➤ Le béta dystroglycane possède un rôle pont (lien) entre les constituants moléculaires intra et extracellulaire. Il est liée à l'alphadystroglycane (située en extracellulaire) et à la dystrophine en intracellulaire. ++

★ Complexe ITV (intégrine-taline-vinculine)

- Protéines transmembranaires => liaison intégrines/domaine intracytoplasmique (complexe comportant taline et vinculine).
 - o La **taline** peut s'associer à la **vinculine** et à l'actine
 - o La vinculine peut se lier à taline, paxilline, alpha-actinine, actine.

<u>Complexe taline-vinculine</u> (lie l'alpha-actinine et actine) permet un rattachement sarcolemme / disque Z sarcomérique.

Des mutations des gènes codant pour les molécules des costamères entraînent des myopathies (Duchenne : dystrophine, DMC)

++ TROIS FONCTIONS MAJEURES DES COSTAMERES ++

- **♥** Lien mécanique sarcolemme/structures contractiles intra-cellulaires.
- Protection de la membrane des <u>risques de déchirement</u> (lors de la contraction)
- Transmission latéralement à la matrice des forces de contraction longitudinale intra-cellulaire.

Myopathie de Duchenne

- Dégénérescence progressive de l'ensemble des muscles de l'organisme.
 - Maladie génétique (anomalie du gène DMD de la dystrophine sur chromosome X)
 - Transmission **récessive**, touche majoritairement les individus de **sexe masculin**.
- Absence dystrophine => détérioration des myocytes (muscles squelettiques, lisses, cardiaques) à chaque contraction jusqu'à une destruction ultime de ces myocytes. Importance des costamères ++
- Prolifération des <u>cellules satellites</u> (essayent de régénérer les fibres musculaires détruites) qui vont être débordée, ne permettant pas la régénération.
- A partir de 3 ans environ => une faiblesse musculaire progressive apparaît => concerne essentiellement les <u>membres INF</u>, puis <u>dos</u>, puis membres SUP, puis <u>muscles respiratoires et cardiaques</u>.
- Multiples complications : fragilité osseuse, problèmes nutritionnels, incontinence.

Dystrophie musculaire congénitale (DMC)

- Groupe hétérogène de maladies neuromusculaires, ayant une origine génétique (transmission autosomique dominante <u>ou</u> récessive) => faiblesse musculaire apparait à la naissance ou petite enfance.
- Les gènes mutés codent pour des molécules intervenant dans les liaisons cellules musculaires/milieu extracellulaire. Plusieurs formes de DMC selon les molécules concernées (différentes formes cliniques, différents niveaux gravité)
- Exemple de déficits en constituants de la MEC en contact avec la cellule musculaire => DMC avec déficit primaire en laminine 2 (DMC la plus fréquente en France) ou DMC avec déficits en constituants complexe protéique DAPC (Ex : alpha-dystroglycane).

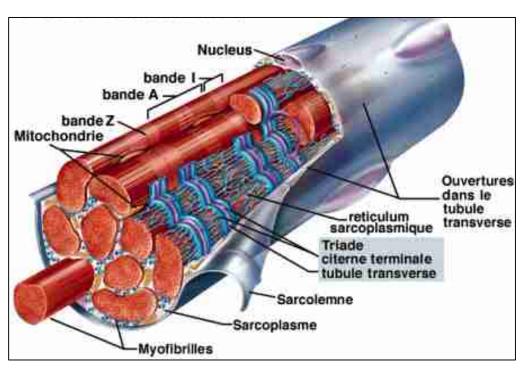
b. Autres constituants membranaires

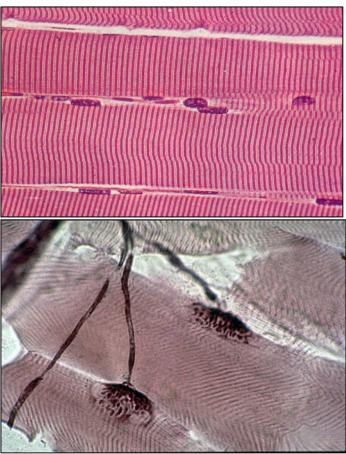
Rôle important dans la physiologie des fibres musculaires =>

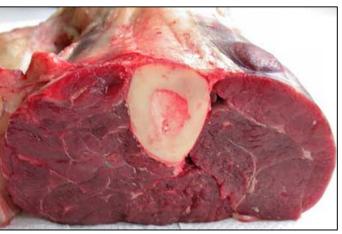
- Transporteurs de glucose (protéines glut 1 et 4)
- Canaux ioniques (jonctions neuromusculaires)
- Récepteurs des neuromédiateurs,
- ...

VI. Diversité des fibres musculaires

Les rhabdomyocytes d'un muscle strié squelettique ne sont pas toutes identiques. Ces rhabdomyocytes vont avoir des **propriétés différentes en terme de vitesse de contraction et de résistance à la fatigue**. Ces propriétés sont conférées par les isoformes prédominantes **de chaîne lourde de myosine (MHC)** présente dans la fibre musculaire. Trois types de fibres sont distingués en fonction l'activité ATPasique de leurs myosines :


Fibres rouges (type I, MCH I)	 Contraction lente => maintien postural. Petit diamètre. Couleur rouge foncé. Nombreuses mitochondries => importante aptitude à régénérer l'ATP, peu fatigables. Permettent de courir longtemps. Rouge = marathon
Fibres blanches à contraction rapide (type IIb, MHC IIb)	 Contraction forte et rapide => activité musculaire intense mais brève. Grande taille. Peu de mitochondries => fatigables. Permettent de faire un sprint.
Fibres blanches à contraction intermédiaire (type IIa, MCH IIa)	 Caractéristiques intermédiaires Par rapport au type I => moindre résistance à la fatigue et force de contraction plus élevée. ++


On va retrouver un <u>mélange de ces fibres</u> dans les muscles, avec en moyenne une proportion <u>50% lentes / 50% rapides</u> (elles-mêmes réparties équitablement entre fibres IIa et IIb).


En fonction des muscles, la proportion va varier de manière à conférer des propriétés de **contractilité forte** d'une part et de **résistance à l'effort** d'autre part.

- Muscles impliqués dans la posture (cou, dos, jambes) => proportion élevée de fibres lentes de type I.
- Muscles impliqués dans l'effort/mouvement (bras, épaules) => riches en fibres rapides de type IIb.

