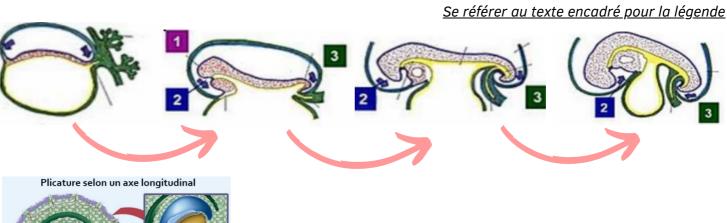

<u>4 ème semaine de développement</u>

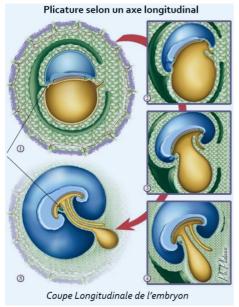
Rappels:

La 3 -ème semaine de développement :

Généralités :

- -> La <u>délimitation</u> est la transformation du DET plat, non délimité en un **embryon définitif cylindrique délimité** par de l'épiblaste secondaire et relié au chorion ou sphère choriale par le cordon ombilical.
- -> Phénomènes de <u>plicature simultanés</u> selon **2 axes** (=double plicature) : <u>longitudinal</u> (cranio-caudal) et <u>transversal</u>.

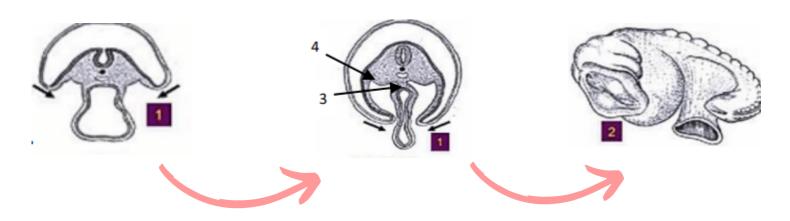

exemple de la plicature avec un champignon pour voir à quoi ca ressemble


- -> La délimitation est un phénomène de morphogénèse cependant l'organogenèse contribue à la délimitation grâce à 2 phénomènes :
 - La neurulation pour la plicature longitudinale.
 - La métamérisation pour la plicature transversale (à partir du mésoblaste para-axial et aboutit à la mise en place des somites dans la région occipito-coccygienne)

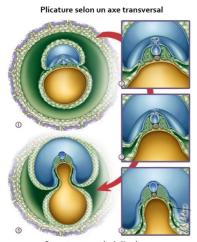
Plicature longitudinal:

La plicature longitudinale résulte de deux grands points importants :

- La neurulation (surtout au niveau crânial) notamment avec la mise en place des 3 vésicules cérébrales primitives (proencéphale/mésencéphale/rhombencéphale).
 - -> Avec une saillie de toute l'extrémité crâniale dans la cavité amniotique (1)
- Du développement très important de la cavité amniotique (dans une sphère choriale qui se développe peu) responsable :
 - -> d'une bascule à 180° de l'extrémité crâniale sous la face ventrale, refoulant ainsi la zone cardiogène (2)
 - ->d'une bascule de la région caudale sous la face ventrale (3)


Plicature transversale:

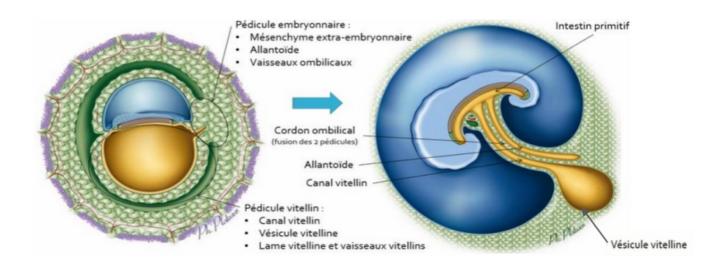
La plicature longitudinale résulte de deux grands points importants également :


- Du développement très important du <u>mésoblaste para-axial</u>
 - -> Avec la mise en place des somites générant une saillie de la partie dorsale de l'embryon dans la cavité amniotique..
- Du développement très important de la cavité amniotique

Apres ces événement résulte le repliement du disque embryonnaire sur lui-même, ses bords latéraux vont venir se rejoindre et se souder sur toute la ligne médiane de l'embryon SAUF au <u>niveau de l'insertion du cordon ombilical</u>.

Notez que la partie internalisée en 3 = Intestin primitif et que la partie (du cœlome externe) internalisée en 4 = cœlome interne

Se référer au texte encadré pour la légende

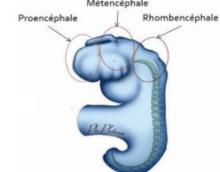


Conséquences:

Le disque embryonnaire se replie sur lui-même :

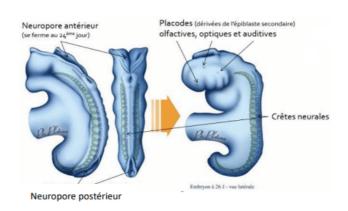
- → Le DET est devenu un embryon cylindrique délimité par l'épiblaste secondaire à l'origine de l'épiderme.
- → La VVII est étranglée en son centre :
- La partie apicale et son toit sont internalisés dans l'embryon et forme l'intestin primitif = conduit entoblastique intra-embryonnaire.
- La partie intermédiaire (zone étranglement) forme le canal vitellin
- La partie restante, inférieure, forme la vésicule ombilicale (régressera ultérieurement)
- → Augmentation importante du volume de la cavité amniotique :
- La lame amniotique est repoussée vers la lame choriale effaçant l'espace les séparant = disparition du cœlome externe
- Formation du cordon ombilical :
 - Entièrement cerné par la paroi de la cavité amniotique
 - ❖ Naît de la fusion des pédicule embryonnaire (3) et vitellin (2)
 - Relie l'embryon à la sphère chorial
- → Pédicule vitellin = Canal vitellin + Vaisseaux vitellins + MEE (lame vitelline) + vésicule vitelline
- → Pédicule embryonnaire = Allantoïde + Vaisseaux ombilicaux + MEE (se rapprocher du pédicule vitellin pour former le cordon)

+++ Cordon ombilical = Pédicule vitellin + Pédicule embryonnaire +++


Devenir du neurectoblaste et de l'épiblaste 2nd :

<u>L'ectoblaste</u> est à l'origine du neurectoblaste et de l'épiblaste secondaire (l'ensemble de l'ectoblaste qui ne s'est pas transformé en neurectoblaste)

→Le tube neural débute sa formation au cours de la 3ème semaine, l'achève durant la 4 -ème semaine avec la fermeture du neuropore antérieur puis du postérieur (comme une double fermeture éclair).


→ La partie *crâniale* du neurectoblaste (plus développée) se divise en **3 zones plus dilatées** qui seront à l'origine des différentes parties du **cerveau et du tronc cérébral** :

o Le proencéphale en avant o Le mésencéphale au milieu o Le rhombencéphale en arrière

- → La partie *caudale* du neurectoblaste, est à l'origine de la moelle épinière.
- → Le reste de l'ectoblaste devenu épiblaste secondaire (=2 nd) évolue assez peu pendant la 4ème semaine, il est essentiellement à l'origine de l'épiderme.

Cependant c'est pendant la 4 ème semaine et à partir de l'épiblaste 2 ndr que se développe les placodes olfactives, optiques et auditives qui interviennent dans la formation des organes des sens (fosses nasales, œil et oreilles).

Les crêtes neurales :

Cellules particulières qui se différencient du fait d'un gradient de l'induction neurale qui existe entre :

- o le <u>neurectoblaste</u>, où l'induction est importante
- o le <u>reste de l'ectoblaste devenant épiblaste secondaire</u>, où l'induction est nulle.

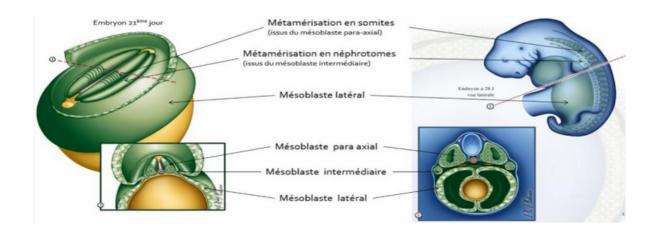
Les cellules présentes à l'interface entre ces 2 zones subissent une induction intermédiaire qui va les conduire vers leur devenir de cellules des crêtes neurales se fait en 3 étapes de différenciation :

- 1. Induction de la plaque neurale
 - 2. Spécification des bords
- 3. Spécification des crêtes neurales
- → Une fois le tube neural fermé, les cellules des crêtes neurales subissent une transition épithélio-mésenchymateuse :
- perte du phénotype épithélial (perte de leur capacité d'adhérence)
- acquisition d'un phénotype mésenchymateux (l'acquisition d'une capacité migratoire)
- → Elles rejoignent le mésenchyme sous-jacent.
- → Elles expriment un fort potentiel migratoire (sous la dépendance de nombreux gènes de migration et de facteurs d'adhésion) et se différencient en une impressionnante variété de tissus.

Participant ainsi à la formation :

o de la dent, o de l'oreille moyenne, o du crâne, o des ganglions rachidiens, o de la médullosurrénal etc...

Neurocristopathies → Pathologies liées à une anomalie de la formation, de la migration, de la différenciation ou de la prolifération des crêtes neurales, elles sont rares, mais avec une grande variété de phénotypes.


Devenir du mésoblaste :

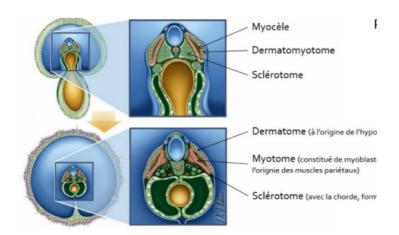
Le mésoblaste (produit de la gastrulation) se divise à la fin de la 3ème semaine en 3 parties distinctes :

o le mésoblaste para-axial, (le plus proche de la chorde) se métamérise (= se segmente) en somite.

o le mésoblaste intermédiaire, se métamérise en néphrotomes.

o le mésoblaste latéral lui-même divisé en 2 feuillets : somatopleure au contact de l'épiblaste 2nd et splanchnopleure au contact de l'entoblaste, NE se métamérise PAS

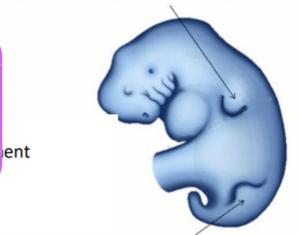
<u>Mésoblaste para-axiale</u>


Bien que la métamérisation des somites commence dès la 3ème semaine, ils n'atteignent leur nombre maximal qu'au 40ème jour et se fait en 2 étapes :

- 1. Formation des somatomères
- 2. Pendant la 4ème semaine, chaque somatomère, **SAUF** les somatomères céphaliques, **se creuse d'une cavité liquidienne**

= myocèle → Deviennent somites alors que les 7 paires de somatomères céphaliques restent les somatomère

Puis chaque somite se divise en 3 parties :


- Le dermatome → à l'origine de l'hypoderme
- Le myotome → à l'origine des muscles de la paroi
- Le sclérotome →à l'origine des vertèbres

Au niveau de certains métamères, les cellules des somites migrent latéralement et soulèvent l'ectoblaste pour constituer les bourgeons des membres :

- Supérieurs, issus des somites cervicaux et thoraciques, apparaissent à J24
- Inférieurs, issus des somites lombaires et sacrés, apparaissent à J28

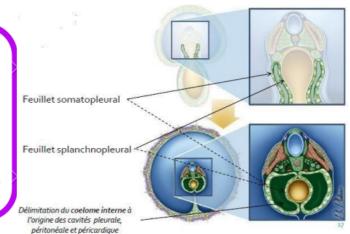
Les somites cervicaux et dorsaux participent à la formation des bourgeons des membres supérieurs (J24)

Les somites lombaires et sacrés participent à la formation des bourgeons des membres inférieurs (J28)

<u>Mésoblaste intermédiaire</u>

Le mésoblaste intermédiaire forme le cordon néphrogène et se métamérise en partie, en néphrotomes. Les néphrotomes :

- o De O2 et C5, forment le pronéphros qui est une structure transitoire vouée à disparaître
- De C6 à L4, forment le mésonéphros qui participe à la formation des gonades mâles, du tractus génital masculin et des voies uringires sus vésicales.
- La partie terminale du cordon néphrogène forme le blastème métanéphrogène qui avec le bourgeon urétéral formera le métanéphros à l'origine des reins

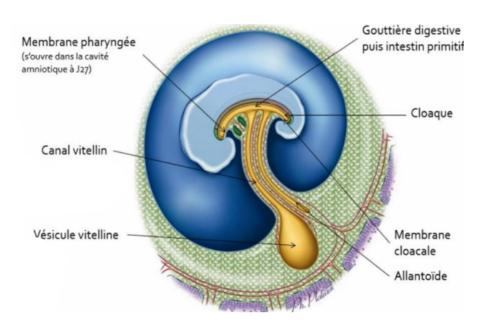

Mésoblaste latéral:

Le mésoblaste latéral est divisé en 2 feuillets :

o Feuillet somatopleural au contact de l'épiblaste 2 secondaire o Feuillet splanchnopleural au contact de l'entoblaste

Ces 2 feuillets délimitent une cavité : le cœlome interne

Ils seront à l'origine des différentes séreuses de l'organisme : le péricarde, la plèvre et le péritoine.


Devenir de l'entoblaste :

Le toit de la vésicule vitelline tapissé d'entoblaste forme la gouttière digestive puis l'intestin primitif.

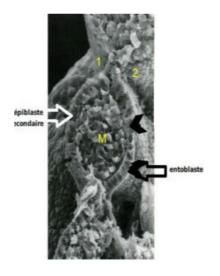
Il reste en communication avec la vésicule vitelline par l'intermédiaire du canal vitellin et avec l'allantoïde.

Il est fermé à :

- son pôle crânial par la membrane pharyngée (future bouche)
- son pôle caudal par la membrane cloacale qui se divisera en membrane uro-génitale et en membrane anale.
- → L'entoblaste sera à l'origine de nombreux épithéliums de revêtements ou glandulaires (notamment l'appareil digestif)

Les arcs branchiaux :

Arcs branchiaux ou arcs pharyngiens sont délimités par :


- o des poches branchiales entoblastiques au niveau de l'entoblaste pharyngien
- o des poches branchiales épiblastiques au niveau de l'épiblaste 2 nd
- → Apparaissent au cours de la 4ème semaine, au nombre de 5 :
- 1er à J22
- 2ème
- 3ème à J24,
- 4ème
- 6ème à J29.

- → Ils sont limités à :
- o l'intérieur par l'entoblaste,
- o l'extérieur par l'épiblaste 2nd,
- o latéralement, entre chaque arc, par les poches et les sillons épiblastiques (1) et entoblastiques (2) et sont constitués à l'intérieur de MIE dont une partie tire son origine des crêtes neurales.

Ils participent à la formation d'un grand nombre de structure de la partie inférieure de la tête et du cou (mâchoire, la langue, l'oreille moyenne ou le pharynx)

Evolution du mésenchyme extra-embryonnaire:

→ Les Îlots de Wolff et Pander fusionnent pour former les 1 er vaisseaux sanguins au cours de la 4ème semaine, aussi bien dans le MEE que dans le MIE. C'est la formation de l'ébauche de la circulation sanguine.

→ La circulation extra-embryonnaire est constituée :

o des vaisseaux de la sphère choriale

o des vaisseaux vitellins

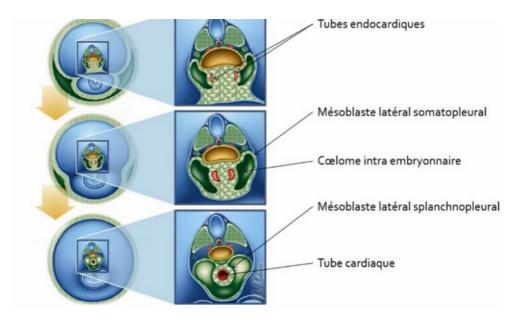
o des vaisseaux ombilicaux qui cheminent dans le cordon ombilical nouvellement formé

→ La circulation intra-embryonnaire est constituée :

o du tube cardiaque formé par les tubes endocardiques

o des **aortes dorsales** fusionnées dans leur partie caudale et entrent en contact avec extrémité céphalique de l'ébauche cardiaque par leur pôle céphalique

o des veines cardinales


Les premiers battement du tube cardiaque sont observables vers le 22ème jour du développement embryonnaire.

→ Formation du tube cardiaque :

Pendant la 3ème semaine, la zone cardiogénique (futur cœur) est située en avant de la membrane pharyngienne.

Lors de la délimitation cette zone bascule à la face ventrale de l'embryon pour occuper sa place définitive. Elle est constituée d'un mélange de mésoblaste et de MIE.

Au sein de ces tissus vont se former 2 tubes endocardiques. Initialement latéraux, ils se rejoignent sur la ligne médiane pour former l'ébauche du cœur : le tube cardiaque.

Ce tube cardiaque est entouré par :

- le mésoblaste latérale splanchnopleural (futur péricarde viscéral)
- le cœlome interne (à ce niveau futur cavité péricardique)
- le mésoblaste latéral somatopleural (futur péricarde pariétal)

RECAP La 4ème semaine est la semaine :

- de la délimitation (embryon discoïde plat à un embryon tubulaire → grâce à une croissance importante des structures dorsales (neurectoblaste, épiblaste secondaire, cavité amniotique...) par rapport aux structures ventrales (entoblaste, vésicule vitelline))
- de la fermeture du tube neural
- de la métamérisation de l'embryon
 - de l'apparition des ébauches des membres
- de la formation de l'ébauche du système vasculaire intra-embryonnaire
- Les crêtes neurales débutent leur transition épithélio-mésenchymateuses
- Les arcs branchiaux se forment

Pathologie: SPINA BIFIDA

Cette partie n'est plus au programme de la 1ère année et ne fera pas l'objet de questions, elle vise seulement à illustrer l'impact qu'une anomalie du développement embryonnaire peut avoir sur la santé de l'enfant à naître.

C'est l'une des pathologies congénitales les plus fréquentes liée à une anomalie de la fermeture du tube neural = mauvaise fermeture du neuropore post au niveau sacré, voir lombaire avec ou non une protrusion des méninges et de la moelle épinière.

→ La forme viable la plus grave = spina bifida avec myéloméningocèle avec protrusion de la moelle épinière et des méninges.

Souvent associée à une altération de la moelle épinière et des racines des nerfs rachidiens responsable d'une paraplégie et d'une incontinence.

- → Multifactorielle associant souvent : une part génétique, l'exposition à des toxiques (alcool, médicaments...)
- → La prévention de cette anomalie repose sur une supplémentation par de la vitamine B9

Place au dédis :))

Déjà en tout premier dédis à mes parents qui m'ont soutenu pendant ma P1

Dédis à ma team de P1 "les futurs médecins" avec elsouille, otchou, clara, dina, fatmanur, ghait

Dédis à toi d'avoir lu cette fiche, vu que t'es un las 2, force à toi pour cette deuxième année et lache rien, (puis je le dirais tout le temps les las 2 vous êtes mes préférés <3)

Dédis à GHAIT mon meilleur binome de la P1, je crois fort en toi, tfacon tu passera

Dédis à Ouissal la plus belle et la plus folle qui passera bien sûr en p2

Dédis à mes big fillots : Adel et imen les meilleurs futurs médecins.

Dédis à Chiraz à ma big sœur algérienne qui m'a soutenu tout le ramadan, t'a aussi interet à passer

Dédis à mes copines P2 Dina, fatmanur et Assyl que j'aime tropp <333