DM pré-CCB1 (Correction) : Chimie Organique

Tutorat 2020-2021 : 8 QCMS

QCM 1: AD

A) Vrai

B) Faux : l'uracile et l'uridine possèdent chacune deux fonctions cétone, pas aldéhyde

C) Faux : c'est C₄H₄N₂O₂, il y a seulement 2 hydrogènes liés aux azotes et 2 liés aux carbones de gauche

D) Vrai : la fonction cétone est prioritaire sur les autres fonctions de la molécule (alcool et amine) donc le nom de la molécule se terminera par « -one », et on a deux cétones, d'où le suffixe « -dione »

E) Faux

QCM 2: AB

A) Vrai:

1^{er} degré : on a notre C* lié à 1 H, 1 O et 2 C. On a donc le H numéroté 4, le O numéroté 1 et indétermination au niveau des 2 C.

2nd degré : on a le C à gauche relié à 1 O, et le C à droite lié à 1 O et 1 C. On a donc le C à gauche numéroté 3 et le C à droite numéroté 2.

Une fois le classement effectué, on parcourt les substituants 1, 2 et 3 dans l'ordre décroissant de priorité et on trouve R. Or le 4ème groupement est dirigé vers l'avant, on inverse donc la configuration absolue et on trouve S.

B) Vrai:

1^{er} degré : on a notre C* lié à 1 H, 1 O et 2 C. On a donc le H numéroté 4, le O numéroté 1 et indétermination au niveau des 2 C.

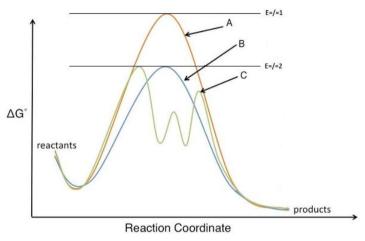
2nd degré : on a le C à gauche relié à 1 O et 1 C, et le C en bas lié à 1 O et 2 C. On a donc le C à gauche numéroté 3 et le C en bas numéroté 2.

Une fois le classement effectué, on parcourt les substituants 1, 2 et 3 dans l'ordre décroissant de priorité et on trouve R. Comme le 4ème groupement est d'emblée dirigé vers l'arrière, on n'inverse pas la configuration absolue.

C) Faux:

À droite : on a le C de la double liaison lié à 1 O en bas et 1 C en haut. On trace donc une flèche du haut vers le bas. À gauche : on a le C de la double liaison lié à 1 O en bas et 1 C en haut. On trace donc également une flèche du haut vers le bas.

Les flèches sont dirigées dans le même sens, on a donc une configuration relative Z.


D) Faux: La rotation autour des liaisons ET L'ANGLE DE VUE n'ont pas d'effet sur la configuration absolue.

E) Faux

QCM3:CD

- A) Faux : ils sont en trans ! (un en avant du plan et l'autre en arrière)
- B) \underline{Faux} : en effet comme on peut voir ci-dessus, on a bien une mésomérie, mais le système conjugué est de type $\pi \sigma n$, car la délocalisation se fait entre le DNL de l'oxygène de droite et la double liaison, et non entre deux doubles liaisons! On aurait pu aussi penser à un système $\pi \sigma \pi$ entre la double liaison avec l'oxygène et celle du cycle, mais elles sont séparées par 2 liaisons sigma et non une, c'est donc pas possible.
- C) <u>Vrai</u> : la structure limite en question est celle représentée à droite, on a bien un oxygène surchargé en électrons en haut et un oxygène déficitaire à droite, mais cette forme sera moins stable que la forme neutre à cause des charges.
- D) Vrai : il est plus électronégatif que le carbone -> il a tendance à attirer les électrons.
- E) Faux

QCM 4: B

- A) \underline{Faux} : Aucune voie n'est THERMODYNAMIQUEMENT favorisée puisque la différence d'énergie entre les réactifs et les produits (ΔrG°) est la même pour les voies A, B et C.
- B) <u>Vrai</u> : Ces deux voies sont CINETIQUEMENT équivalentes puisque la différence d'énergie entre les réactifs et l'état de transition (Ea) est la même pour les voies B et C.
- C) Faux: La voie B ne possède aucun IR et donc 1 E=/= tandis que la voie C possède 2 IR pour 3 E=/=.
- D) <u>Faux</u> : Les 3 voies sont exergoniques (libèrent de l'énergie) puisque les produits sont plus bas en énergie que les produits.
- E) Faux

QCM 5: E

- A) Faux: Une réaction acido-basique (selon Lewis BRÖNSTED) est un échange de protons entre deux espèces.
- B) <u>Faux</u> : Le pH caractérise l'acidité de la solution, il se calcule par la formule : pH = log [H3O+]. Attention au signe MOINS.
- C) <u>Faux</u>: Le pKa varie entre 0 et 14 A UNE TRES GRANDE FOURCHETTE DE VALEURS et permet de définir les domaines d'existence préférentiels entre un acide et une base.
- D) Faux : Alors là attention, petit rappel :

Acide fort → Base conjuguée stable + Acide fort → Base faible donc Acide fort → Base faible mais stable Base forte → Riche en électrons

Donc une base stable est synonyme d'acide fort et une base riche en électrons est synonyme de base forte donc l'item est contradictoire.

E) Vrai

QCM 6: AB

- A) Vrai : La molecule 1 comporte un DNL, elle possède donc une forte densité électronique et est donc nucléophile.
- B) <u>Vrai</u>: Les molécules 2 et 4 comportent respectivement une case vacante et une charge partielle positive, elles possèdent donc une faible densité électronique et sont donc électrophiles.
- Précision pour la molécule 4 : on regardera toujours le C pour déterminer le caractère nucléophile ou électrophile de la molécule.
- C) <u>Faux</u> : Item wtf. Pour la molécule 3, on n'a pas de polarisation particulière donc pas de caractère électrophile ou nucléophile. La question de la basicité ne se pose même pas.
- D) <u>Faux</u>: La nucléophilie augmente avec la taille de la molécule DE L'ATOME. Si la taille de la molécule augmente, l'encombrement stérique augmente et les électrons sont moins disponibles pour former une liaison avec une espèce électrophile. La nucléophilie diminue donc.
- E) Faux

QCM7: ABD

- A) Vrai: substrat secondaire, solvant aprotique, bon nucléophile -> tout ça est compatible avec une SN2.
- B) <u>Vrai</u> : le proton arraché doit toujours être en antipériplanaire, donc de l'autre côté par rapport au nucléofuge : ici le chlore est en avant du plan, on ne peut arracher que le proton qui est en arrière du plan, donc H₂.
- C) <u>Faux</u> : il ne pourra pas effectuer de E1 car il se trouve sur un carbone primaire ! Mais sinon toutes les conditions énoncées favorisent l'E1.
- D) <u>Vrai</u> : L'iode se trouve sur un carbone tertiaire donc la réaction ne peut pas être d'ordre 2 ! Donc uniquement E1 ou SN1.
- E) Faux

QCM 8: C

$$H_2N^{W}$$
 H_2N^{W} H_2N^{W} CH_3 H_2N^{W} CH_3 H_3 CH_3 H_3

- A) Faux: ici le nucléofuge c'est le brome, le H₂N c'est pas un bon nucléofuge
- B) <u>Faux</u> : en effet on a un solvant protique et un nucléophile moyen, mais ça indique plutôt une réaction d'ordre 1, surtout que le carbone est tri-substitué donc la réaction d'ordre 2 est impossible ! +++
- C) Vrai : cf. schéma de la réaction
- D) Faux : le carbone n'est pas asymétrique donc on ne peut pas parler de configuration absolue...
- E) Faux