Biophysique des solutions FICHE RECAP FORMULES		
Concentration massique ou pondérale	$Ci = \frac{m}{V} g/L$	m = grammes de soluté V = volume de solution i = identification de soluté
Concentration molaire ou molarité	$C^{M}i = \frac{n}{V} mol/L$	n = nombre de moles de soluté V = volume de la solution i = soluté
	$C^{M}i = \frac{Ci}{Mi} mol/L$	Ci = concentration pondérale M = masse molaire du soluté i
Concentration osmolaire ou osmolarité	$C^{0}i = \frac{n_{osm}}{V} osmol/L$	n_{osm} = nombre d'osmoles de soluté V = volume de solution i = soluté
	$C^{o} = i.C^{M}osmol/L$	 C^M = concentration molaire i = nombre d'osmoles obtenues par molécule mise en solution
Nombre d'osmoles i obtenues par molécule mise en solution	$i=1+\alpha(v-1)$	α = taux de dissociation v = nombre d'espèces dissociées
Titre	$ au = rac{m_{solut\acute{e}}}{m_{solut\acute{e}} + m_{eau}} \%$	$m_{solut\acute{ heta}}$ = masse du solut $\acute{ heta}$ m_{eau} = masse de l'eau
Molalité	$C^m i = rac{n}{m_{eau}} \ mol/kg$	m_{eau} = masse de l'eau n = nombre de moles de soluté
Osmolalité	$C^{o}i = rac{n_{osm}}{m_{eau}} \ osmol/kg$	n_{osm} = nombre d'osmoles de soluté m_{eau} = masse de l'eau
Loi de Fick (pas importante pour les calculs, mais il faut connaitre la relation entre les différents facteurs)	$Jd = -D \times S \frac{\Delta C}{\Delta x}$	D = coefficient de diffusion S = surface de diffusion $\frac{\Delta C}{\Delta x}$ = gradient de concentration

Abaissement cryoscopique	$\Delta \boldsymbol{\theta} = -Kc x C^o$	Kc = constante cryoscopique C^o = osmolarité ou osmolalité
Augmentation de la température d'ébullition	$\Delta \theta = Keb \ x \ C^o$	Keb = constante ébullioscopique C^o = osmolarité ou osmolalité
Loi de Pfeffer Van't Hoff	$\pi = RTC^{O}$	R = constante des gaz parfaits T = température absolue en °K (°C + 273) C^0 = concentration en osmoles en osmol.m ⁻³ π = pression osmotique en Pascals
	$\pi = RT(C^02 - C^01)$	Pression osmotique entre deux compartiments différents de concentrations osmolaires différentes