

Equation Différentielle

Définitions

ED : équation dont les inconnus sont des fonctions

Flot: solution d'une ED

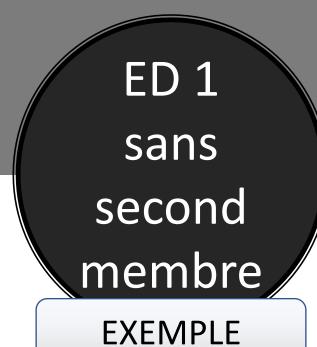
ED 1
sans
second
membre

$$y' + ay = 0$$

+++ A toujours une solution +++

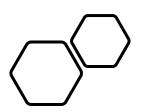
 Ce^{ax} est solution de y' = ay

ED 1 sans second membre

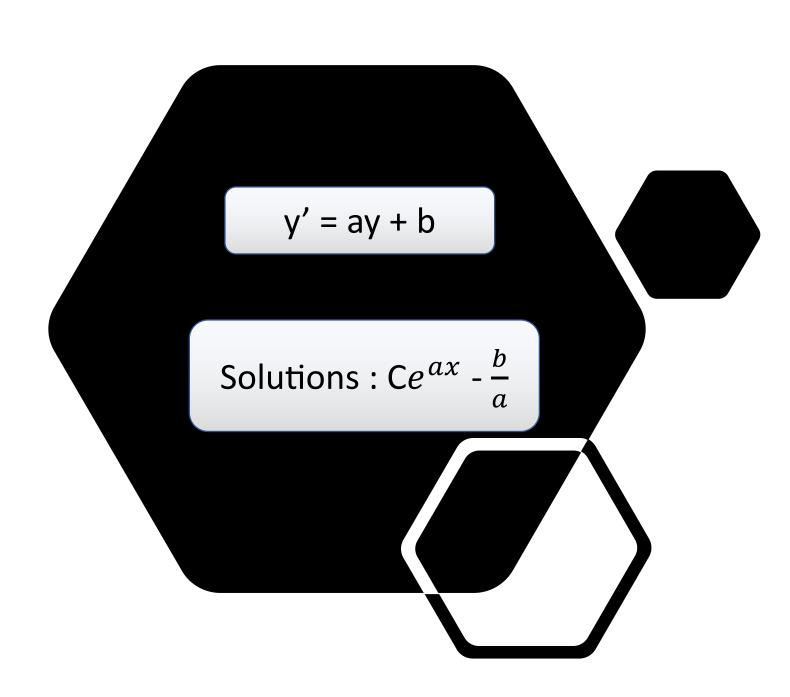

EXEMPLE

$$5y' + 3y = 0$$

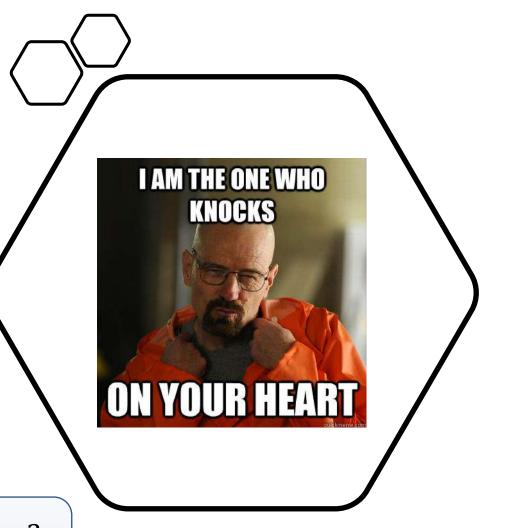
1. Mettre sous forme 5y' = -3y


- 2. Trouver a : $y' = -\frac{3}{5}y$
- 3. Remplacer a dans la formule : $Ce^{-\frac{s}{5}x}$

 Ce^{ax} est solution de y' = ay


Si l'ED est de la forme y' + ay la solution est Ce^{-ax}

ED l avec second membre



ED l avec second membre

EXEMPLE

$$2y' + 6y = 4$$

- 1. Mettre sous la forme 2y' = -6y + 4
 - 2. Trouver a et b : y' = -3y + 2

3. Remplacer a et b dans la formule : $Ce^{-3x} + \frac{2}{3}$

Tous les ED sont homogènes en P1 (sans second membre)

$$ay'' + by' + cy = 0$$

Polynôme caractéristique associé : $aX^2 + bX + c$

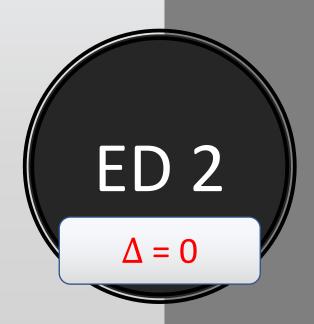
Déterminant : $\Delta = b^2$ - 4ac

EXEMPLE

$$2y'' + 4y' + y = 0$$

$$\Delta = 8$$
 $r_1 = -\frac{1}{4}$ $r_2 = -\frac{7}{4}$

Solutions : $Ce^{-\frac{1}{4}x} + Ce^{-\frac{7}{4}x}$

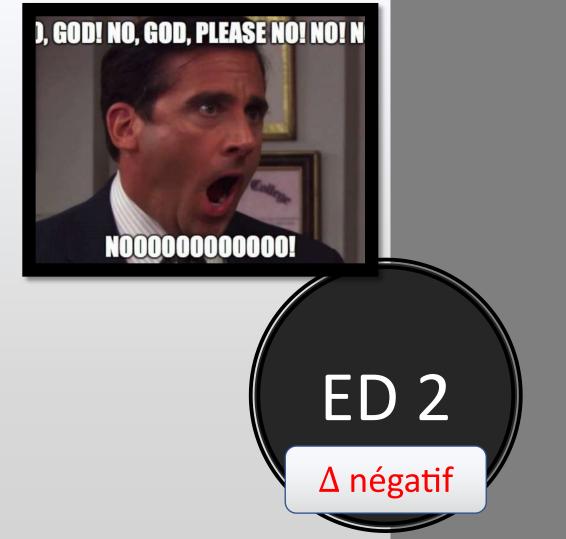

Solution de la forme $C_1e^{r_1x} + C_2e^{r_2x}$

EXEMPLE

$$2y'' + 4y' + 2y$$

$$\Delta = 0$$
 r = -1

Solutions: $(C_1x + C_2)e^{-x}$


Solution de la forme ($C_1x + C_2$) e^{rx}

EXEMPLE

$$2y'' + 4y' + 6y$$

$$\Delta = -32 \quad r = -1 \pm \frac{3}{2}i$$

Solutions: $(C_1 \sin(\frac{3}{2}x) + C_2 \cos(\frac{3}{2}x))e^{-x}$

Solutions: $(C_1\sin(wx) + C_2\cos(wx))e^{rx}$

QCM

Soit l'ED y' + 2y = 3, indiquez la proposition exacte :

- A) Il s'agit d'une ED de 2eme ordre
- B) La solution est $Ce^{-2x} + \frac{3}{2}$
- C) Une des solutions est $Ce^{2x} \frac{3}{2}$
- D) Δ est positif
- E) Les propositions A, B, C et D sont fausses

- A) FAUX: C'est une ED de 1^{er} ordre avec second membre
- B) FAUX: Une des solutions
- C) FAUX: une des solutions est $Ce^{-2x} + \frac{3}{2}$
- D) Il n'y a pas de Δ
- E) VRAI

On considère une équation différentielle de 1^{er} ordre

- A) Il peut ne pas y avoir de solution
- B) Les solutions de cette équation s'écriront Ce^{ax}
- C) L'équation y" + y = 0 est une équation de 1^{er} ordre sans second membre
- D) Les solutions de cette équation s'appelle un flot
- E) Les propositions A, B, C et D sont fausses

- A) FAUX : une ED 1 à toujours une solution
- B) FAUX : si ED avec second membre il faut $\frac{b}{a}$
- C) FAUX : y'' c'est dans les équation de second ordre
- D) VRAI
- E) FAUX