FLIMINATIONS

Favorisé par la chaleur Avec des bases

F1

Conduit à l'alcène le plus stable :

- Le plus substitué (Zaïtsev)
- Alcène E

Etape 2: Attaque de la base qui va capturer un proton

- Le proton et l'orbitale p vacante du C+ doivent être coplanaire
- **Stéréosélectif** (critère cinétique)
- Régiosélectif (critère thermodynamique)
- NON- stéréospécifique

E2

- Formation d'1 seul alcène = stéréospécifique
- Le proton et l'halogène doivent être en antipériplanaire
- Elimination en ANTI
- Régiosélective
- Contrôle **cinétique**

Camnésie

Fiche récap &N/E

TYPE 1

Favorisée par :

- Bon Fu
- Substrat **tertiaire** (ou C+ stabilisé par mésomérie par ex)
- Base/Nu- moyen(ne) à forte
- Solvant **protique** (ionisant) *ex* : *H*₂*O*, *MeOH* ...

Implication

- 2 étapes

Etape 1 : Départ du Fu et formation du C+ plan → cinétiquement déterminante

- Intermédiaire réactionnel plan

<u>Cinétique d'ordre 1</u> : la vitesse ne dépend que du dérivé **halogéné**

TYPE 2

Favorisée par :

- Nu-/ base Fort(e)
- Fu moyen
- Substrat primaire
- Solvant polaire aprotique (DMSO, DMF...)

Implications

- Réaction en 1 étape

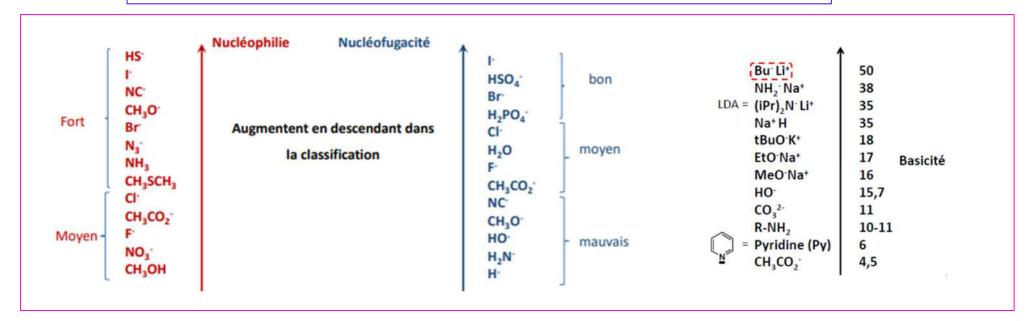
<u>Cinétique d'ordre 2</u> : la vitesse de la réaction dépend du **dérivé halogéné** ET de la **base/ du Nu-**

SUBSTITUTIONS NUCLEOPHILES

Avec des Nu-

SN:

Mélange racémique


Etape 2 : Attaque nucléophile 2 faces d'attaques équivalentes

CIAS

- impossible avec substrat tertiaire
- Etat de transition pentavalent
- Inversion de Walden
- Parfois inversion de configuration absolue

Petits rappels qui ne font pas de mal :

- 1- Solvants polaires protiques qui sont donneurs de liaisons H : H₂O, MeOH, EtOH, CH3COOH
- 2- Solvants polaires aprotiques qui sont accepteurs de liaisons H

