### Annales 2022/2023: Épreuve ECUE 4 - Biophysique

Tutorat 2022-2023 : XX QCMS – Durée : XXmin – Code épreuve : XXXX



### QRU 1 : Concernant la fraction d'éjection ventriculaire gauche (FEVG), quelle est la proposition exacte ?

- A) Elle dépend uniquement de la précharge du ventricule gauche
- B) Elle dépend uniquement de la postcharge du ventricule gauche
- C) Elle dépend à la fois de la précharge et de la postcharge du ventricule gauche
- D) Elle ne dépend ni de la précharge, ni de la postcharge du ventricule gauche
- E) Les propositions A, B, C et D sont fausses

### QRU 2 : Concernant la contractilité du ventricule gauche, quelle est la proposition exacte ?

- A) Elle dépend uniquement de la précharge du ventricule gauche
- B) Elle dépend uniquement de la postcharge du ventricule gauche
- C) Elle dépend à la fois de la précharge et de la postcharge du ventricule gauche
- D) Elle ne dépend ni de la précharge, ni de la postcharge du ventricule gauche
- E) Les propositions A, B, C et D sont fausses

### **QRU 3**:

## La transpiration est un moyen efficace de thermorégulation PARCE QUE

la chaleur lente de vaporisation de l'eau pure est très basse

- A) Les deux assertions sont vraies et ont une relation de cause à effet
- B) Les deux assertions sont vraies et n'ont pas une relation de cause à effet
- C) La première assertion est vraie, mais la deuxième est fausse
- D) La première assertion est fausse, mais la deuxième est vraie
- E) Les deux assertions sont fausses

QRU 4: Quelle est la masse molaire (en  $g.mol^{-1}$ ) de l'acide acétylsalicylique (aspirine) dont la formule est  $C_9H_8O_4$ ? On donne les masses molaires atomiques de l'hydrogène  $M_H=1\ g.mol^{-1}$  et de l'oxygène  $M_O=16\ g.mol^{-1}$ 

- A) 72
- B) 29
- C) 137
- D) 180
- E) 198

QRU 5 : Quelle est la proposition exacte à propos d'une solution constituée de 9g de chlorure de sodium NaCl dissous dans un litre d'eau ? On donne les masses molaires atomiques du sodium  $M_{Na}=24~g.~mol^{-1}$ ; du chlore  $M_{Cl}=36~g.~mol^{-1}$  et le taux de dissociation du NaCl  $\alpha=1$ 

- A) Sa concentration pondérale massique est égale à 9%
- B) Sa molarité est égale à  $0.18 \ mol. \ L^{-1}$
- C) Sa molalité est égale à  $0,20 \text{ mol. } L^{-1}$
- D) Son osmolarité est égale à 0,15 osmol. L<sup>-1</sup>
- E) Les propositions A, B, C et D sont fausses

#### QRU 6 : Quelle est la proposition exacte à propos de la diffusion ?

- A) La diffusion du soluté dans son solvant se fait de la zone la moins concentrée vers la plus concentrée
- B) Il s'agit d'un mécanisme actif utilisant de l'énergie
- C) Elle est formalisée par la loi de Pfeffer-Van't Hoff
- D) Elle est due à l'agitation thermique
- E) Les propositions A, B, C et D sont fausses

# <u>QRU 7</u> : Soit deux solutions aqueuses de concentrations différentes du même soluté séparées par une membrane synthétique imperméable aux molécules du soluté.

### Il existe une pression osmotique de part et d'autre de la membrane PARCE QUE

### Un transport actif s'établit de la solution la moins concentrée vers la plus concentrée

- A) Les deux assertions sont vraies et ont une relation de cause à effet
- B) Les deux assertions sont vraies et n'ont pas une relation de cause à effet
- C) La première assertion est vraie, mais la deuxième est fausse
- D) La première assertion est fausse, mais la deuxième est vraie
- E) Les deux assertions sont fausses

# <u>QCM 8</u>: Soit un vaisseau musculo-élastique. La différence de pression $\Delta P$ ( $\Delta P = Pint - Pext$ ) est telle qu'un rayon d'équilibre non nul est obtenu. Quelle(s) est (sont) la (les) modifications(s) qui fait (font) courir un risque d'obstruction ?

- A) L'augmentation de l'élasticité de la composante élastique de la paroi sans modification de ΔP
- B) L'augmentation du tonus vasomoteur sans modification de  $\Delta P$
- C) La diminution de ΔP sans modification des caractéristiques de la paroi
- D) L'augmentation de ΔP associée à la diminution du tonus vasomoteur
- E) Les propositions A, B, C et D sont fausses

### QRU 9 : Quelle est la proposition exacte à propos de la mesure auscultatoire de la pression artérielle ?

- A) Les bruits de Korotkov témoignent des conditions de circulation à travers les valves cardiaques
- B) Le premier bruit audible au stéthoscope est dû à une circulation turbulente en systole
- C) L'apparition d'un deuxième bruit permet de repérer la pression artérielle diastolique
- D) La disparition de tout bruit à l'auscultation permet de repérer la pression artérielle moyenne
- E) Les propositions A, B, C et D sont fausses

# QRU 10 : On cherche à mesurer la différence de pression sanguine latérale entre l'amont et l'aval d'une sténose valvulaire aortique $(P_{amont} - P_{aval})$ .

On utilise l'écho-Doppler qui permet de mesurer les vitesses d'écoulement du sang :  $v_{amont} = \frac{1}{2} \left( \frac{1}{2} \right) \left( \frac{1}{2} \right) \left( \frac{1}{2} \right) \left( \frac{1}{2} \right)$ 

 $1 m. s^{-1} et v_{aval} = 3 m. s^{-1}$ 

En considérant l'écoulement comme continu, horizontal et le fluide comme idéal ( $\rho=10^3~kg.m^{-3}$ ), quelle est la différence de pression exprimée en Pascal ?

A) 2

B) 1.10<sup>2</sup>

 $C) 2.10^3$ 

 $D) 4.10^{3}$ 

E)  $5.10^3$ 

# QCM 11 : Si, pour un effort donné, la contractilité du ventricule gauche augmente, quelle(s) est(sont) la(les) proposition(s) exacte(s) ?

- A) Le volume télédiastolique du ventricule gauche reste similaire
- B) Le volume télésystolique du ventricule gauche diminue
- C) Le volume d'éjection systolique du ventricule gauche augmente
- D) La pression aortique moyenne augmente
- E) Les propositions A, B, C et D sont fausses

#### QCM 12: Quelles sont la(les) proposition(s) exacte(s) à propos du nombre de Reynold?

- A) C'est un nombre empirique qui permet d'évaluer si les conditions de circulation sont compatibles ou non avec un régime d'écoulement laminaire
- B) La vitesse de circulation intervient au numérateur
- C) La viscosité intervient au dénominateur
- D) Le diamètre du conduit intervient au numérateur
- E) Les propositions A, B, C et D sont fausses